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Definition

A fundamental problem that attempts to estimate the likelihood of the
existence of a link between two nodes, based on observed links and
the attributes of nodes.

Specifically, consider an undirected network G(V, E), where V is the set of
nodes and E 1s the set of links. Denote by U, the universal set containing
all | VI(1 V1-1)/2 possible links. Then, the set of nonexistent links is U- E.
We assume that there are some missing links (or the links that will
appear in the future) in the set U- E, and the task of link prediction is to
find out these links.
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Motivation

Link prediction can be used to:

1. extract missing information;

2. identify spurious({&ef¥), Dyi&H]) interactions;
3. evaluate network evolving mechanisms;
4

. and so on.

B R/FR: 1815 Paixin.com
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Motivation

znk re ictjon ¢an be used to:
0 tedt the a orfﬁqm s accuracy, the observed links, E, is randomly

dividsdifeh '3%909 ;fla%g‘fﬁirg’%%lzorﬁng set, ET, is treated as known
aforifigitiafy somiTiond ﬁ%ﬁ@e séjﬂ&%@@édﬂﬁ%ﬂﬂéﬁ%%%et), E?, is used for
Bstiegaluate netmwankevoluirig stechdivisndsto be used for prediction.
Wse Knfold gss-validation.
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evaluate network evolving mechanisms:

Two standard metrics:

1.

AUC: the probability that a randomly chosen missing link (i.e., a link
in E¥) is given a higher score than a randomly chosen nonexistent
link (i.e., a link in U-E). If among n independent comparisons, there
are n’ times the missing link having a higher score and n’’ times they
have the same score, the AUC value is

n' + 0.51n"
AUC =

n

Precision: if we take the top-L links as the predicted ones, among
which L, links are right (i.e., there are L, links in the probe set E P)
then the precision equals L,./L
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evaluate network evolving mechanisms:
An example:

If an algorithm assigns scores of all non-observed links as

S12 = 04‘, S13 = 05, S14 = 06, S34 = 05, Syg5 = 0.6

Whole graph Training graph
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evaluate network evolving mechanisms:

An example:
If an algorithm assigns scores of all non-observed links as

S12 = 04‘, S13 = 05, S14 = 06, S34 = 05, Syg5 = 0.6

1. AUC: There are six pairs in total, S13 > S12,513 < S14, S13 = S34,

Sas > S12, S45 = S14, Sas > S34. Hence, the AUC value equals
(3X1+2x%0.5)/6=0.67.

2. Precision: if L=2, the predicted
links are (1, 4) and (4, 5). Clearly,
the former is wrong while the

latter is right, and thus the
precision equals 0.5 .

Whole graph Training graph
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Four mainstream approaches

1. Similarity-based algorithms
*  Local similarity indices
*  Global similarity indices
*  Quasi-local indices
2. Maximum likelihood methods
*  Hierarchical structure model
*  Stochastic block model
3.  Matrix and tensor factorizations
*  Matrix factorizations
»  ensor factorizations

4.  Probabilistic models
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1. Similarity-based algorithms

each pair of nodes, x and y, is assigned a score Sy,,, which is directly
defined as the similarity/proximity between x and y. All non-observed
links are ranked according to their scores, and the links connecting

more similar nodes are supposed to be of higher existence
likelihoods.

structural similarity

0S.

social similarity, textual similarity...
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1. Similarity-based algorithms

The fundamental starting point for most measures of structural similarity
is the assumption that the edges in a network themselves indicate a
similarity between the vertices they connect (assortativity[F]BCE).

02 OPTION Q

01 OPTION p
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1. Similarity-based algorithms

1.1 Local similarity indices

Common Neighbors (CN):  sg3) = |['(x) N ' (y)|

satton _ 1T NT(Y)|

Salton Index: Sxy \/kkay

Jaccard |F(x) N F(Y)l
Jaccard Index: S =
i Irx)urQy)|

I'(x) : the set of neighbors of x
ky : the degree of node x



1. Similarity-based algorithms

1.1 Local similarity indices

Sorensen Index:

Hub Promoted Index (HPI):

Hub Depressed Index (HDI):

Sgrensen _—

Xy

wor _ T 0T )
max{k,, ky}

Xy

@

2| (x) nI'(y)

ky + K,

per_ MG NI

min{k,, ky}

I'(x) : the set of neighbors of x
ky : the degree of node x
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1. Similarity-based algorithms

1.1 Local similarity indices

Leicht—Holme—Newman Index(LHN1):

Preferential Attachment Index(PA):

Adamic—Adar Index(AA):

Resource Allocation Index (RA):
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vt _ 1T ) NG
Xy ky X ky,

Syy =ky Xk

1

logk,
zel'(x)Nr'(y)

z 1
S,%’;l = k_Z

Zer(x)Nr(y)

AA _




1. Similarity-based algorithms

1.1 Local similarity indices

Accuracy (measured by the AUC value):

@
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Indices PPI NS Grid PB INT USAIr
CN 0.889 0.933 0.590 0.925 0.559 0.937
Salton 0.869 0911 0.585 0.874 0.552 0.898
Jaccard 0.888 0.933 0.590 0.882 0.559 0.901
Serensen 0.888 0933 0.590 0.881 0.559 0.902
HPI 0.868 0911 0.585 0.852 0.552 0.857
HDI 0.888 0.933 0.590 0.877 0.559 0.895
LHN1 0.866 0911 0.585 0.772 0.552 0.758
PA 0.828 0.623 0.446 0.907 0.464 0.886
AA 0.888 0.932 0.590 0.922 0.559 0.925
RA 0.890 0933 0.590 0931 0.559 0.955

PPI: a protein—protein interaction network

NS: a coauthorship network of scientists who are themselves publishing on the topic of network

Grid: an electrical power grid of the western

PB: a network of the US political blogs

INT: a routerlevel Internet collected by Rocketfuel Project
USAir: a network of the US air transportation system
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1. Similarity-based algorithms

1.2 Global similarity indices

Katz Index: Sylf}?tz = BAyy + ,BZ(AZ)xy + ﬁ3(A3)xy + ..

-1
A
Leicht-Holme-Newman Index (LHN2): S = 2MA,D ! <I — ﬁ—) D1
1

Dyy = Oxykyx ( Oxyis the Kronecker function: 8,y =1 if x =y, otherwise equals 0)

P : the transition matrix with Py, = 1/k,
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1. Similarity-based algorithms

1.2 Global similarity indices

Sij=¢z,4w5vj+zp5ij B S=¢AS+yl WP S =9 — pA)

sety = 1:

S=U—-pA) =1+ A+ p?4% + -

But vertices with very high degree, for instance, will almost certainly have
one or several paths of length two connecting them, even if connections
between vertices are just made at random. So simple counts of number of
paths are not enough to establish similarity. We need to know when a pair
of vertices has more paths of a given length between than we would
expect by chance.
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1. Similarity-based algorithms

1.2 Global similarity indices

The expected value of (A'),,,, namely E[(A'),,], equals (kyk,/2M)A~",
where Ay 1s the largest eigenvalue of A and M is the total number of edges

in the network (derived from the configuration model). Replace (A"),.,, in
with (A'),,, /E (AY),I:

2M 2MA 2MA o \ '
191-1( 4l _ |1 _ 1 1 _
N F e e ()

XY =0

LHN2 _
Xy

Since the first item is a diagonal matrix, it can be dropped and thus we

arrive to a compact expression: )
e
S =2MA,D1 (1 — ¢—> p-1
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1. Similarity-based algorithms

1.2 Global similarity indices

Katz Index: ngtz = BAyy + ,BZ(AZ)xy + ﬁ3(A3)xy + ..

-1
A
Leicht-Holme-Newman Index (LHN2): S = 2MA,D ! <I — ﬁ—) D1
1

Random Walk with Restart (RWR): Ec) = CPT@ + (1 - C)ZS

Dyy = Oxykyx ( Oxyis the Kronecker function: 8,y =1 if x =y, otherwise equals 0)

P : the transition matrix with Py, = 1/k,



1. Similarity-based algorithms

1.2 Global similarity indices

Accuracy (LP is a quasi-local indice):

@
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AUC PPI NS Grid PB INT USAir
LP 0.970 0.988 0.697 0.941 0.943 0.960
LP* 0.970 0.988 0.697 0.939 0.941 0.959
Katz 0.972 0.988 0.952 0.936 0.975 0.956
LHN2 0.968 0.986 0.947 0.769 0.959 0.778
Precision PPI NS Grid PB INT USAir
LP 0.734 0.292 0.132 0.519 0.557 0.627
LP* 0.734 0.292 0.132 0.469 0.121 0.627
Katz 0.719 0.290 0.063 0.456 0.368 0.623
LHN2 0 0.060 0.005 0 0 0.005
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1. Similarity-based algorithms

1.3 Quasi-local indices

Local Path Index (LP): SLP = A2 4+ 43

Local Random Walk (LRW): ngw(t) = QxTlyy(t) + qynyx(t)

t

Superposed Random Walk (SRW): ~ Syy" (t) = zS£§W (1)

=1

a random walker is initially put on node x and thus the initial density vector T, (0) = €,
this density vector evolves as Tx (t +1) = PT T, (t)

q : the initial configuration function, such as qx=ﬁx (M is the total number of edges)
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1. Similarity-based algorithms

1.3 Quasi-local indices

Accuracy (AUC & Precision):

AUC CN RA LP ACT RWR HSM LRW SRW
USAir 0.954 0.972 0.952 0.901 0.977 0.904 0.972(2) 0.978(3)
NetScience 0978 0983 0.986 0.934 0.993 0.930 0.989(4) 0.992(3)
Power 0.626 0.626 0.697 0.895 0.760 0503 0.953(16) 0.963(16)
Yeast 0915 0916 0.970 0.900 0.978 0.672 0.974(7) 0.980(8)
Celegans 0.849 0.871 0.867 0.747 0.889 0.808 0.899(3) 0.906(3)
Precision CN RA LP ACT RWR HSM LRW SRW
USAir 059 0.64 0.61 0.49 0.65 0.28 0.64(3) 0.67(3)
NetScience 0.26 054 0.30 0.19 055 0.25 0.54(2) 0.54(2)
Power 0.11 0.08 0.13 0.08 0.09 0.00 0.08(2) 0.11(3)
Yeast 0.67 0.49 0.68 057 052 0.84 0.86(3) 0.73(9)

Celegans 0.12 0.13 0.14 0.07 0.13 0.08 0.14(3) 0.14(3)
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2. Maximum likelihood methods

The algorithms presuppose some organizing principles of the network
structure, with the detailed rules and specific parameters obtained
by maximizing the likelihood of the observed structure. Then, the
likelihood of any non-observed link can be calculated according to those

rules and parameters.

cE-o el
@®@ a

@ :E:U' m.d"l Bso
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2. Maximum likelihood methods

2.1 Hierarchical structure model

0.3

I 0.4

0.5 | 0.8

E O(gl

Fig.1 Illustration of a dendrogram of a network with 5 nodes.
Accordingly, the connecting probability of nodes 1 and 2 is 0.5,

of nodes 1 and 3 is 0.3, of nodes 3 and 4 is 0.4.

f Rz HEsEIa =
\ ’ Data Mining Lab

each internal node r is
associated with a probability
p, and the connecting
probability of a pair of nodes
(leaves) is equal to p,» where
1’ is the lowest common
ancestor of these two nodes.



f Rz HEsEIa =
\ ’ Data Mining Lab

2. Maximum likelihood methods

2.1 Hierarchical structure model

Given a real network G and a dendrogram D, let E,. be the number of edges
in G whose endpoints have r as their lowest common ancestor in D,
and let L, and R,., respectively, be the number of leaves in the left and right
subtrees rooted at r. Then the likelithood of the dendrogram D together with a

set of py is LT .
/ a v e
([ Xo—@C [ G
E _ S .
@iy -[[amppns TR
e e i L 2

/

6@ %5@@?% £l

9
iy
1
maximizes L(D, {p,}) for a fixed D i\& 2 0% : {) £f>

L(D,) ~ 0.00165 L(D,) ~ 0.0433
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2. Maximum likelihood methods

2.1 Hierarchical structure model

The algorithm to predict the missing links contains the following procedures:

a) sample a large number of dendrograms with probability proportional to
their likelihood;

b) for each pair of unconnected nodes i and j, calculate the mean connecting
probability {p;;) by averaging the corresponding probability p;; over all
sampled dendrograms;

c) sort these node pairs in descending order of {p;;) and the highest-ranked
ones are those to be predicted
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2. Maximum likelihood methods

2.2 Stochastic block model

nodes are partitioned into groups and the probability that two nodes
are connected depends solely on the groups to which they belong;

capture the community structure, role-to-role connections and maybe
other factors for the establishing of connections, especially when the
group membership plays a considerable role in determining how
nodes interact with each other.
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2. Maximum likelihood methods

2.2 Stochastic block model

Given a partition M where each node belongs to one group and the
connecting probability for two nodes respectively in groups o and p is denoted
by Qap (Quq represents the probability that two nodes within group « are
connected), then the likelihood of the observed network structure is:

LMy = | [ Qf (1 = Qup)7es s
aspf

lap : the number of edges between nodes in groups a and f

Tap : the number of pairs of nodes such that one node is in a and the other is in 3
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2. Maximum likelihood methods

2.2 Stochastic block model

Given a partition M where each node belongs to one group and the
connecting probability for two nodes respectively in groups o and p is denoted
by Qap (Quq represents the probability that two nodes within group « are
connected), then the likelihood of the observed network structure is:

Iy _
LMy = | [ Qf (1 = Qup)7es s
aspf
lap

Qup = rag maximizes the likelihood L(A|M)
a
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2. Maximum likelihood methods

2.2 Stochastic block model

L) = | [ 0uf (1 - Qup)esles
asf

M={{1,23}, {4567 Q1 =2=10=2=1,05 =2
thus the lzkelzhood S:

L—1>< 1\ (5 10>< 5’ (1 E~3005><10‘4
=x45) 5) *6) ()2
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2. Maximum likelihood methods

2.2 Stochastic block model

Denote by Q the set of all possible partitions, the reliability of an individual link 1s:

| LAy = 1IM)L(AIM)p(M)dM

ooy = Loy = W) =2 T 0y ane

p(M) : a constant assuming no prior knowledge about the model

Note: the number of different partitions of N elements grows faster than any finite power of
N, and thus even for a small network, to sum over all partitions is not possible in practice.

So usually use the Metropolis—Hastings algorithm.
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2. Maximum likelihood methods

2.2 Stochastic block model

J, L(Axy = LIM)L(AIM)p(M)dM
Jo LCAIM")p(M")dM'

Reliability describes the likelihood of the existence of a link (i.e., the probability that

the link “truly”” exists) given the observed structure, which can be used to:

 predict missing links (the nonexistent links in the observed network yet with the

highest reliabilities)

* identify possible spurious links (the existent links with the lowest reliabilities)



f Rz HEsEIa =
\ , Data Mining Lab

3. Matrix and tensor factorizations

Now we focus on bipartite graphs, which are the targets of Recommender Systems.

|smioen-man

L v

similar users.

£
At
[MAPACASCAR
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3. Matrix and tensor factorizations
3.1 Matrix factorizations

 Suppose that our data set consists of matrices Z, through Zy of size M X N

and the goal is to predict Zy,q, where Z is:

1 if object i links to object | at time t
0 otherwise

Z(i,),t) = {

* Collapse the data into a single M X N matrix X:

T
X(@) = ) (1= 020, ))
t=1

the link structure is damped backward in time
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3. Matrix and tensor factorizations
3.1 Matrix factorizations

* Truncated SVD:
suppose that the compact SVD of X is given by X = UXVT

suppose that the compact SVD of X is given by X ~ Uy X Vi

P

Uk, Vk: comprise the first K columns of U and V and Xy is the K X K principal

submatrix of X (ordered by the corresponding singular value)

A matrix of scores for predicting future links can then be calculated as S ~ Uy X, Vi
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3. Matrix and tensor factorizations
3.1 Matrix factorizations

* Truncated SVD:
suppose that the compact SVD of X is given by X = UXVT

suppose that the compact SVD of X is given by X ~ U X VL

This is one reason for using of SVD: low-rank approximation for scalability

There is another one interpretation: realizations of latent factor models



3. Matrix and tensor factorizations

3.1 Matrix factorizations

Latent factor models

Fig.2 A simplifed illustration
of the latent factor approach,
which characterizes both users
and movies using two axes —
male versus female and serious
versus escapist.

The Color Purple

)
«
‘)\k

¥
¢

Serious

1

Amadeus

@

Braveheart

7
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Lethal Weapon

Sense and
Geared Sensibility | Ocean's 11 ﬁ : Geared
toward < U e — toward
females males
The Lion King Baa 3
28] Dumber
The Princess Independence| | =%
Diaries Day P
Gus
Escapist
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3. Matrix and tensor factorizations

3.1 Matrix factorizations

Latent factor models

R=lUuxyT

\ 4

S .7
R= PQ or Twi = Pudi

But this often raises difficulties due to the high portion of missing values

caused by sparseness in the user-item ratings matrix.

Carelessly addressing only the relatively few known entries is highly prone
to overfitting.
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3. Matrix and tensor factorizations

3.1 Matrix factorizations

Latent factor models

* Solutionl: earlier systems relied on imputation to fill in missing ratings

and make the rating matrix dense;

* Solution2: modeling directly the observed ratings only, while avoiding
overfitting through a reqularized model:

min > (g = pLa0? + A0 Ipul? + 1112
' (u,i)ek
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3. Matrix and tensor factorizations

3.1 Matrix factorizations

Latent factor models

More inputs, or other considerations:

« implicit feedback, including purchase history, browsing history,
search patterns, or even mouse movements;

* systematic tendencies for some users to give higher ratings than
others, and for some items to receive higher ratings than others;

* ratings to the similar items, which is called neighborhood models
conventionally.



f Rz HEsEIa =
\ ’ Data Mining Lab

3. Matrix and tensor factorizations

3.1 Matrix factorizations

An integrated model

1
Au the ov_el_r%ll aVgrage rﬁ%lngl_l_ IN(w)| 2 z y;) + |RE (i )| 2 z (ruj = bu;) Wa;
by, by: the observed deviations of user u ARl Sem i, respectively, fréff tistRverage;

R(u): alWhe oy f?)r wz;h ritings by u are available

JENK(i;u)
N (u) : all items for which u provided an implicit preference

S®(Q) : the set of k items most similar i
R¥(i; u): R(w) N S*(i)

Vi, Wy, Cij: offsets which can be learnt from the data through optimization
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3. Matrix and tensor factorizations

NetfLix Prize Competition

In 2006, the online DVD rental company Netflix announced a contest to improve
the state of its recommender system. To enable this, the company released a

training set of more than 100 million ratings spanning about 500,000 anonymous
customers and their ratings on

more than 17,000 mouvies, each NETELIX

Continue Watching

movie being rated on a scale of 1
to 5 stars. The first participating
team that can improve on the
Netflix algorithm’s RMSE(Root-
Mean-Square) performance by 10
percent or more wins a $1

million prize.



f Rz HEsEIa =
\ ’ Data Mining Lab

3. Matrix and tensor factorizations

3.2 Tensor factorizations

Instead of collapsing the data, tensor factorization can explicitly model
the time dimension.

CP(CANDECOMP/PARAFAC) Decomposition:

Given a three-way tensor Z of size M X N X T, its K-component CP
decomposition is given by

K
/ = ElkaRObkock
k=1

o denotes the outer product
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3. Matrix and tensor factorizations
3.2 Tensor factorizations

K
CP(CANDECOMP/PARAFAC) Decomposition: Z = z AxQy © by o ci
k=1

An N-way tensor X € R'1 X Rz X X RN is rank one if it can be written as

| I |

INL
Xb:l: a(l) P_E(z)o...obélv) _|_...+ bR

duct of Negéctors | /Cz /R

X

e

ap ar

_ @ 2 O
Fig.3 CP decorftpoisitiim of f¢hrébizoay dbigy: factorizes a tensor

into a sum of component rank-one tensors.

This meays that eiich element of the tenspr is the product of the cqryesponding
vector elements: |



f Rz HEsEIa =
\ ’ Data Mining Lab

3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

The CP tensor decomposition can be considered an analogue of the SVD

because it decomposes a tensor as a sum of rank-one tensors just as the
SVD decomposes a matrix as a sum of rank-one matrices.

Computing the CP Decomposition:

Assuming the number of components is fixed, there is the “workhorse”
algorithm for CP: the alternating least squares (ALS) method.
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3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

ALS method:

The goal is to compute a CP decomposition with K components that
best approximates Z:

m21n||Z—Z|| with Zzzl,gzllkak Obk °Ck = [A,A,B,C]

The ALS approach fixes B and C to solve for A, then fixes A and C to solve for
B, then fixes A and B to solve for C, and continues to repeat the entire
procedure until some convergence criterion is satisfied.
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3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

ALS method:

procedure CP-ALS(X,R)
initialize A(™ € RIn*XE for n =1,... N
repeat
forn=1,...,N do
V - AMTAM) ... g AT A(n=1) L A(R+LT A(n+1) o 4 AT A(N)
Aln) X{ﬂ-)(A(N) -0 AT o Aln=1) o .. @A(l))vT
normalize columns of A(™) (storing norms as \)
end for
until fit ceases to improve or maximum iterations exhausted
return A, AD) A2 AW)

end procedure
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3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

Define the similarity score for objects i and j using a K-component CP
model as the (i, j) entry of the following matrix:

K T
5= 2 Vi axbi , where yi = z ¢ (t)
k=1 t=T—2

Obuiously, this treatment loses much information for prediction!
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3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

Fig.4 Examples from
50-component CP
model of publications
from 1991 to 2000
(DBLP data, it
contains publications
from 1936 through
the end of 2007 ).

Adthor . : : ; : : Adthor : T . T : T
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000

Conference ' ' ' ' ' Conference '

0 i L] l l L. 0 b= J. . el [_._ Il.j.ll ; P

200 400 600 800 1000 200 400 600 800 1000

Year " " ! ' Year

Ot , ) . £ o - ; . 1

1991 1993 1995 1997 1999 1991 1993 1995 1997 1999

(a) Factors from component 3: Top authors are Alberto L. (p) Factors from component 4: Top authors are Miodrag Potkon:

Sangiovanni Vincentelli, Robert K. Brayton, Sudhakar M. Reddy, jak, Massoud Pedram, Jason Cong, and Andrew B. Kahng. Tof
and Irith Pomeranz. Top conferences are DAC, ICCAD, and gnferences are DAC. ICCAD. and ASPDAC.

ICCD.
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3. Matrix and tensor factorizations

3.2 Tensor factorizations

CP(CANDECOMP/PARAFAC) Decomposition:

. .. I Al Link
Link Prediction Results: -NewI:insks

0.95

. PredzctmgAll Links: po:

LS H T S hsete ™
. %& fghﬁé'&f%inks H

seven aining/tes
lzydﬁ@ctrlﬂﬁtblaw@dﬂ@t beenn  oss|
pIBUATSHI St any ti
the training set. 08 To

TSVD-CT
TSVD-CWT
TKatz-CT
TKatz-CWT
Katz-CT
Katz-CWT
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4, Probabilistic models

Probabilistic models aim at abstracting the underlying structure from the
observed network, and then predicting the missing links by using the
learned model. Given a target network G = (V, E), the probabilistic model
will optimize a built target function to establish a model composed of a
group of parameters ©, which can best fit the observed data of the target
network. Then the probability of the existence of a nonexistent link (1, j) is
estimated by the conditional probability P(A;j=110).
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1. Reconstruction of networks

the reconstruction of networks from the observed networks with missing
and spurious links.

R(4) = 1_[ Ryy = 1_[ L(Ay, = 1|4°)

Axyzl,x<y Axyzl,x<y

A straightforward idea is to find out the network A that maximizes the
reliability R(A).
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1. Reconstruction of networks

2. Evaluation of network evolving mechanisms

an algorithm for link prediction makes a guess about the factors resulting
in the existence of links, which i1s actually what an evolving model wants

to show. In other words, an evolving model in principle can be mapped to
a link prediction algorithm.
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1. Reconstruction of networks

2. Evaluation of network evolving mechanisms

3. Classification of partially labeled networks

Given a network with partial nodes being labeled, the problem is to predict
the labels of these unlabeled nodes based on the known labels and the
network structure. An underlying assumption is that two nodes are
more likely to be categorized into the same class if they are more

similar to each other.
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1. Reconstruction of networks

2. Evaluation of network evolving mechanisms

3. Classification of partially labeled networks

{yly=x,lable(y)=1;}

p(li|x) =
2 Sxy
{y|ly#x,lable(y)#0}

The nodes without labels are labeled by 0




04 Conclusion



Conclusion

Maximum like




f $iRIZIESEIS =
\ ’ Data Mining Lab

v' L. Lii, T. Zhou. Link prediction in complex networks: A survey.
Physica A, 390 (2011), pp. 1150-1170.

v' Koren, Y., Bell, R. M., Volinsky, C.: Matrix factorization technigues
for recommender systems. IEEE Computer 42(8), 30-37 (2009) 32.

v' E. Acar, D.M. Dunlavy, T.G. Kolda. Link prediction on evolving
data using matrix and tensor factorizations Proc. of the 2009 IEEE
International Conference on Data Mining Workshops, ICDMW ’09,
IEEE Computer Society, Washington, DC, USA (2009), pp. 262-
269

v' T. Kolda, B. Bader, Tensor decompositions and applications, SIAM
Rev. 51, 455-500 (2009).

V...

Reference



Thanks!



